

Scottish Government's Carbon Calculator - Macauley Institute Model

Payback Time

Payback Time

. Windfarm CO2 emission saving 2. CO2 loss due to turbine life 3. CO2 loss due to backup 4. Loss of CO2 fixing potential 5. Loss of soil CO2 (a,b) 5. Loss of soil CO2 (c,d,e) 6. CO2 loss by DOC & POC loss 7. Forestry CO2 loss 8. CO2 gain - site improvement

1. Windfarm CO2 emission saving over	Exp.	Min.	Max.
coal-fired electricity generation (t CO2 / yr)	1,991	1,770	2,212
grid-mix of electricity generation (t CO2 / yr)	384	342	427
fossil fuel-mix of electricity generation (t CO2 / yr)	858	763	954
Energy output from windfarm over lifetime (MWh)	59,603	44,150	77,263

Total CO2 losses due to wind farm (tCO2 eq.)	Exp.	Min.	Max.
2. Losses due to turbine life (eg. manufacture, construction, decomissioning)	54,656	54,656	54,656
3. Losses due to backup	35,762	29,802	41,722
4. Lossess due to reduced carbon fixing potential	1,259	504	2,842
5. Losses from soil organic matter	-5,729	-4,663	-4,467
6. Losses due to DOC & POC leaching	0	0	0
7. Losses due to felling forestry	1,671	1,348	2,089
Total losses of carbon dioxide	87,620	81,646	96,843

8. Total CO2 gains due to improvement of site (t CO2 eq.)	Exp.	Min.	Max.
8a. Change in emissions due to improvement of degraded bogs	0	0	0
8b. Change in emissions due to improvement of felled forestry	0	0	0
8c. Change in emissions due to restoration of peat from borrow pits	0	0	0
8d. Change in emissions due to removal of drainage from foundations & hardstanding	0	0	0
Total change in emissions due to improvements	0	0	0

RESULTS	Exp.	Min.	Max.
Net emissions of carbon dioxide (t CO2 eq.)	87,620	81,646	96,843
Carbon Payback Time			
coal-fired electricity generation (years)	44.0	36.9	54.7
grid-mix of electricity generation (years)	228.1	191.3	283.6
fossil fuel-mix of electricity generation (years)	102.1	85.6	126.9

fossil fuel-mix of electricity generation (years)	102.1	85.6	126.9
Ratio of soil carbon loss to gain by restoration (not used in Scottish applications)	No gains!	No gains!	No gains!
Ratio of CO2 eq. emissions to power generation (g/kWh) (for info. only)	1470.05	1056.73	2193.48

Payback Time - Charts

ayback Time

Payback Time - ChartsInput Data

1. Windfarm CO2 emission saving 2. CO2 loss due to turbine life 3. CO2 loss due to backup 4. Loss of CO2 fixing potential 5. Loss of soil CO2 (a,b) 5. Loss of soil CO2 (c,d,e) 6. CO2 loss by DOC & POC loss 7. Forestry CO2 loss 8. CO2 gain - site improvement

Print this page

Carbon Calculator v1.7.0

Borrisbeg Renewable Energy Development Location: 52.830791 -7.807331

Enerco

Core input data

Input data	Expected value	Minimum value	Maximum value	Source of data
Windfarm characteristics				
Dimensions				
No. of turbines	9	9	9	Ch 4 Description
Duration of consent (years)	30	25	35	Ch 4 Description
Performance				
Power rating of 1 turbine (MW)	7	7	7	Ch 4 Description
Capacity factor	0.36	0.32	0.4	Enduring Connection Policy 2.2 Constraints Report for Solar and Wind in Area H1
Backup				
Fraction of output to backup (%)	5	5	5	SNH Carbon Calculator Guidance
Additional emissions due to reduced thermal efficiency of the reserve generation (%)	10	10	10	Fixed
Total CO2 emission from turbine life (tCO2 MW ⁻¹) (eg. manufacture, construction, decommissioning)	Calculate wrt installed capa	city Calculate wrt installed capac	city Calculate wrt installed capac	city
Characteristics of peatland before windfarm development				
Type of peatland	Acid bog	Acid bog	Acid bog	N/A
Average annual air temperature at site (°C)	9.8	5.1	15	Ch 11. Climate
Average depth of peat at site (m)	0	0	0	N/A
C Content of dry peat (% by weight)	55	50	60	Default Value Used
Average extent of drainage around drainage features at site (m)	15	10	20	Default Value Used
Average water table depth at site (m)	0.5	0.1	1	Default Value Used
Dry soil bulk density (g cm ⁻³)	0.1	0.09	0.11	Default Value Used
Characteristics of bog plants				
Time required for regeneration of bog plants after restoration (years)	10	5	15	Best Practice in Raised Bog Restoration in Ireland
Carbon accumulation due to C fixation by bog plants in undrained peats (tC ha ⁻¹ yr ⁻¹)	0.25	0.2	0.3	SNH Guidance Default Value
Forestry Plantation Characteristics				
Area of forestry plantation to be felled (ha)	4.22	4.2	4.4	Ch 4 Description
Average rate of carbon sequestration in timber (tC ha ⁻¹ yr ⁻¹)	3.6	3.5	3.7	SNH Guidance Default Value
Counterfactual emission factors				
Coal-fired plant emission factor (t CO2 MWh ⁻¹)	1.002	1.002	1.002	
Grid-mix emission factor (t CO2 MWh ⁻¹)	0.19338	0.19338	0.19338	
Fossil fuel-mix emission factor (t CO2 MWh ⁻¹)	0.432	0.432	0.432	
Borrow pits				
Number of borrow pits	1	1	2	Ch 4 Description
Average length of pits (m)	195	190	200	Manually Determined
Average width of pits (m)	100	95	105	Manually Determined
Average depth of peat removed from pit (m)	0	0	0	N/A

5. Loss of soil CO2 (a, b)

sack Time

lack Time - ChartsInput Data

lindfarm CO2 emission saving 2, CO2 loss due to turbine life 3. CO2 loss due to backup 4. Loss of CO2 fixing potential 5, Loss of soil CO2 (a,b) 5. Loss of soil CO2 (c,d,e) 6. CO2 loss by DOC & POC loss 7, Forestry CO2 loss 8. CO2 gain - site improvement

lindfarm CO2 emission saving 2, CO2 loss due to turbine life 3. CO2 loss due to backup 4. Loss of CO2 fixing potential 5, Loss of soil CO2 (a,b) 5. Loss of soil CO2 (c,d,e) 6. CO2 loss by DOC & POC loss 7, Forestry CO2 loss 8. CO2 gain - site improvement

lindfarm CO2 emission saving 2. CO3 loss due to turbine life 3. CO2 loss due to backup 4. Loss of CO2 fixing potential 5, Loss of soil CO2 (a,b) 5. Loss of soil CO2 (c,d,e) 6. CO2 loss by DOC & POC loss 7, Forestry CO2 loss 8. CO2 gain - site improvement

lindfarm CO3 emission saving 2. CO3 loss due to turbine life 3. CO3 loss due to turbi

Emissions due to loss of soil organic carbon

Loss of C stored in peatland is estimated from % site lost by peat removal (table 5a), CO2 loss from removed peat (table 5b), % site affected by drainage (table 5c), and the CO2 loss from drained peat (table 5d).

5. Loss of soil C02

	Exp.	Min.	Max.
CO2 loss from removed peat (t CO2 equiv.)	-5728.85	-4466.69	-4663.33
CO2 loss from drained peat (t CO2 equiv.)	0	0	0
RESULTS			
Total CO2 loss from peat (removed + drained) (t CO2 equiv.)	-5728.85	-4663.33	-4466.69
Additional CO2 payback time of windfarm due to loss of soil C			
coal-fired electricity generation (months)	-34.53	-31.62	-24.23
grid-mix of electricity generation (months)	-178.93	-163.86	-125.56
fossil fuel - mix of electricity generation (months)	-80.1	-73.35	-56.21

CO₂ loss from removed peats

If peat is treated in such a way that it is permanently restored, so that less than 100% of the C is lost to the atmosphere, a lower percentage can be entered in cell C10.

5b. CO2 loss from removed peat

	Exp.	Min.	Max.
CO2 loss from removed peat (t CO2)	46.78	0.00	725.28
CO2 loss from undrained peat left in situ (t CO2)	5775.63	4466.69	5388.61
RESULTS			
CO2 loss atributable to peat removal only (t CO2)	-5728.85	-4466.69	-4663.33

Volume of Peat Removed

% site lost by peat removal is estimated from peat removed in borrow pits, turbine foundations, hard-standing and access tracks. If peat is removed for any other reason, this must be added in as additional peat excavated in the core input data entry.

5a. Volume of peat removed

	Exp.	Min.	Max.
Peat removed from borrow pits			
Area of land lost in borrow pits (m2)	19500	18050	42000
Volume of peat removed from borrow pits (m3)	0	0	0
Peat removed from turbine foundations			
Area of land lost in foundation (m2)	5625	3600	8100
Volume of peat removed from foundation area (m3)	56.25	0	810
Peat removed from hard-standing			
Area of land lost in hard-standing (m2)	17572.5	13725	21870
Volume of peat removed from hard-standing area (m3)	175.73	0	2187
Peat removed from access tracks			
Area of land lost in floating roads (m2)	0	0	0
Volume of peat removed from floating roads (m3)	0	0	0
Area of land lost in excavated roads (m2)	35000	32500	45000
Volume of peat removed from excavated roads (m3)	0	0	0
Area of land lost in rock-filled roads (m2)	0	0	0
Volume of peat removed from rock-filled roads (m3)	0	0	0
Total area of land lost in access tracks (m2)	35000	32500	45000
Total volume of peat removed due to access tracks (m3)	0	0	0
RESULTS			
Total area of land lost due to windfarm construction (m2)	77697.5	67875	116970
Total volume of peat removed due to windfarm construction (m3)	231.98	0	2997

5. Loss of soil CO2 (c,d,e)

Payback Time

Payback Time - ChartsInput Data

. Windfarm CO2 emission saving 2, CO2 loss due to turbine life 3, CO2 loss due to backup 4, Loss of CO2 fixing potential 5, Loss of Soil CO2 (a,b) 5, Loss of Soil CO2 (c,d,e) 6, CO2 loss by DOC & POC loss 7, Forestry CO2 loss 8, CO2 gain - site improvement

Volume of peat drained

Extent of site affected by drainage is calculated assuming an average extent of drainage around each drainage feature as given in the input data.

5c. Volume of peat drained

	Exp.	Min.	Max.
Total area affected by drainage around borrow pits (m2)	9750	6100	27600
Total volume affected by drainage around borrow pits (m3)	0	0	0
Peat affected by drainage around turbine foundation and hardstanding			
Total area affected by drainage of foundation and hardstanding area (m2)	46035	25290	72180
Total volume affected by drainage of foundation and hardstanding area (m3)	230.18	0	3609
Peat affected by drainage of access tracks			
Total area affected by drainage of access track(m2)	210000	130000	300000
Total volume affected by drainage of access track(m3)	0	0	0
Peat affected by drainage of cable trenches			
Total area affected by drainage of cable trenches(m2)	0	0	0
Total volume affected by drainage of cable trneches(m3)	0	0	0
Drainage around additional peat excavated			
Total area affected by drainage (m2)	0	0	0
Total volume affected by drainage (m3)	0	0	0
RESULTS			
Total area affected by drainage due to windfarm (m2)	265785	161390	399780
Total volume affected by drainage due to windfarm (m3)	230.18	0	3609

CO₂ loss due to drainage

Note, CO2 losses are calculated using two approaches: IPCC default methodology and more site specific equations derived for this project. The IPCC methodology is included because it is the established approach, although it contains no site detail. The new equations have been derived directly from experimental data for acid bogs and fens (see Nayak et al. 2008 - Final report).

5d. CO2 loss from drained peat

	Exp.	Min.	Max.
Calculations of C Loss from Drained Land if Site is NOT Restored after Decomissioning			
Total GHG emissions from Drained Land (t CO2 equiv.)	46.42	0	873.39
Total GHG emissions from Undrained Land (t CO2 equiv.)	46.42	0	873.39
Calculations of C Loss from Drained Land if Site IS Restored after Decomissioning			
Losses if Land is Drained			
CH4 emissions from drained land (t CO2 equiv.)	-33.91	-277.21	9919.99
CO2 emissions from drained land (t CO2)	19791	10897.89	8497.18
Total GHG emissions from Drained Land (t CO2 equiv.)	46.42	0	873.39
Losses if Land is Undrained			
CH4 emissions from undrained land (t CO2 equiv.)	-33.91	-277.21	9919.99
CO2 emissions from undrained land (t CO2)	19791	10897.89	8497.18
Total GHG emissions from Undrained Land (t CO2 equiv.)	46.42	0	873.39
RESULTS			
Total GHG emissions due to drainage (t CO2 equiv.)	0	0	0

Emission rates from soils

Note, CO2 losses are calculated using two approaches: IPCC default methodology and more site specific equations derived for this project. The IPCC methodology is included because it is the established approach, although it contains no site detail. The new equations have been thoroughly tested against experimental data (see Nayak et al, 2008 - Final report).

5e. Emission rates from soils

	Exp.	Min.	Max.
Calculations following IPCC default methodology			
Flooded period (days/year)	178	178	178
Annual rate of methane emission (t CH4-C/ha year)	0.04	0.04	0.04
Annual rate of carbon dioxide emission (t CO2/ha year)	35.2	35.2	35.2
Calculations following ECOSSE based methodology			
Total area affected by drainage due to wind farm construction (ha)	26.58	16.14	39.98
	^-		^ *

7. Forestry CO2 loss

sack Time

Jack Time - ChartsInput Data

Indiam CO2 emission saving 2, CO2 loss due to turbine life 3, CO2 loss due to backup 4, Loss of CO2 fixing potential 5, Loss of soil CO2 (a,b) 5, Loss of soil CO2 (c,d,e) 6, CO2 loss by DOC & POC loss 7, Forestry CO2 loss 8, CO2 gain - site improvement

CO₂ loss from forests - calculation using detailed management information

Forest carbon calculator (Perks et al, 2009)

Total potential carbon squestration loss due to felling of forestry for the wind farm (t CO2) Total emissions due to cleared land (t CO2) Emissions due to harvesting operations (t CO2) Fossil fuel equivalent saving from use of felled forestry as biofuel (t CO2) Fossil fuel equivalent saving from use of replanted forestry as biofuel (t CO2) Total carbon loss associated with forest management(t CO2)

Emissions due to forest felling - calculation using simple management data

Emissions due to forestry felling are calculated from the reduced carbon sequestered per crop rotation. If the forestry was due to be removed before the planned development, this C loss is not attributable to the wind farm and so the area of forestry to be felled should be entered as zero.

	Exp.	Min.	Max.
Area of forestry plantation to be felled (ha)	4.22	4.2	4.4
Carbon sequestered (t C ha-1 yr-1)	3.6	3.5	3.7
Lifetime of windfarm (years)	30	25	35
Carbon sequestered over the lifetime of the windfarm (t C ha-1)	108	87.5	129.5
RESULTS			
Total carbon loss due to felling of forestry (t CO2)	1671.14	1347.51	2089.29
Additional CO2 payback time of windfarm due to management of forestry			
coal-fired electricity generation (months)	10.07	9.14	11.33
grid-mix of electricity generation (months)	52.2	47.35	58.73
fossil fuel - mix of electricity generation (months)	23.36	21.2	26.29

8. CO2 gain - site improvement

Ilme
Time - ChartsInput Data
rm CO2 emission saving 2. CO2 loss due to turbine life 3. CO2 loss due to backup 4. Loss of CO2 fixing potential 5. Loss of soil CO2 (a,b) 5. Loss of soil CO2 (c,d,e) 6. CO2 loss by DOC & POC loss 7. Forestry CO2 loss 8. CO2 gain - site imp

Gains due to site improvement

Note, CO2 losses are calculated using two approaches: IPCC default methodology and more site specific equations derived for this project. The IPCC methodology is included because it is the established approach, although it contains no site detail. The new equations have been thoroughly tested against experimental data (see Nayak et al, 2008 - Final report).

Degraded Bog

Dog.adou Dog	Exp.	Min.	Max.
1. Description of site			
Area to be improved (ha)	0	0	0
Depth of peat above water table before improvement (m)	0	0	0
Depth of peat above water table after improvement (m)	0	0	0
2. Losses with improvement			
Improved period (years)	0	0	0
Selected annual rate of methane emissions (t CH4-C ha-1 yr-1)	0.498	0.481	0.516
CH4 emissions from improved land (t CO2 equiv.)	0	0	0
Selected annual rate of carbone dioxide emissions (t CO2 ha-1 yr-1)	0.482	-0.768	1.865
CO2 emissions from improved land (t CO2 equiv.)	0	0	0
Total GHG emissions from improved land (t CO2 eqiv.)	0	0	0
3. Losses without improvement			
Improved period (years)	0	0	0
Selected annual rate of methane emissions (t CH4-C ha-1 yr-1)	0.498	0.481	0.516
CH4 emissions from improved land (t CO2 equiv.)	0	0	0
Selected annual rate of carbone dioxide emissions (t CO2 ha-1 yr-1)	0.482	-0.768	1.865
CO2 emissions from unimproved land (t CO2 equiv.)	0	0	0
Total GHG emissions from unimproved land (t CO2 eqiv.)	0	0	0

Borrow Pits

	Exp.	Min.	Max.
1. Description of site			
Area to be improved (ha)	0	0	0
Depth of peat above water table before improvement (m)	0	0	0
Depth of peat above water table after improvement (m)	0	0	0
2. Losses with improvement			
Improved period (years)	0	0	0
Selected annual rate of methane emissions (t CH4-C ha-1 yr-1)	0.498	0.481	0.516
CH4 emissions from improved land (t CO2 equiv.)	0	0	0
Selected annual rate of carbone dioxide emissions (t CO2 ha-1 yr-1)	0.482	-0.768	1.865
CO2 emissions from improved land (t CO2 equiv.)	0	0	0
Total GHG emissions from improved land (t CO2 eqiv.)	0	0	0
3. Losses without improvement			
Improved period (years)	0	0	0
Selected annual rate of methane emissions (t CH4-C ha-1 yr-1)	0.498	0.481	0.516
CH4 emissions from improved land (t CO2 equiv.)	0	0	0
Selected annual rate of carbone dioxide emissions (t CO2 ha-1 yr-1)	0.482	-0.768	1.865
CO2 emissions from unimproved land (t CO2 equiv.)	0	0	0
Total GHG emissions from unimproved land (t CO2 eqiv.)	0	0	0

Felled Forestry

•	Exp.	Min.	Max.
1. Description of site			
Area to be improved (ha)	0	0	0
Depth of peat above water table before improvement (m)	0	0	0
Depth of peat above water table after improvement (m)	0	0	0
2. Losses with improvement			
Improved period (years)	0	0	0
Selected annual rate of methane emissions (t CH4-C ha-1 yr-1)	0.498	0.481	0.516
CH4 emissions from improved land (t CO2 equiv.)	0	0	0
Selected annual rate of carbone dioxide emissions (t CO2 ha-1 yr-1)	0.482	-0.768	1.865
CO2 emissions from improved land (t CO2 equiv.)	0	0	0
Total GHG emissions from improved land (t CO2 eqiv.)	0	0	0
3. Losses without improvement			
Improved period (years)	0	0	0
Selected annual rate of methane emissions (t CH4-C ha-1 yr-1)	0.498	0.481	0.516
CH4 emissions from improved land (t CO2 equiv.)	0	0	0
Selected annual rate of carbone dioxide emissions (t CO2 ha-1 yr-1)	0.482	-0.768	1.865
CO2 emissions from unimproved land (t CO2 equiv.)	0	0	0
Total GHG emissions from unimproved land (t CO2 eqiv.)	0	0	0

Foundations & Hardstanding

	Exp.	Min.	Max.
1. Description of site			
Area to be improved (ha)	0	0	0
Depth of peat above water table before improvement (m)	0	0	0
Depth of peat above water table after improvement (m)	0	0	0
2. Losses with improvement			
Improved period (years)	30	25	35
Selected annual rate of methane emissions (t CH4-C ha-1 yr-1)	0.498	0.481	0.516
CH4 emissions from improved land (t CO2 equiv.)	0	0	0
Selected annual rate of carbone dioxide emissions (t CO2 ha-1 yr-1)	0.482	-0.768	1.865
CO2 emissions from improved land (t CO2 equiv.)	0	0	0
Total GHG emissions from improved land (t CO2 eqiv.)	0	0	0
3. Losses without improvement			
Improved period (years)	30	25	35
Selected annual rate of methane emissions (t CH4-C ha-1 yr-1)	0.498	0.481	0.516
CH4 emissions from improved land (t CO2 equiv.)	0	0	0
Selected annual rate of carbone dioxide emissions (t CO2 ha-1 yr-1)	0.482	-0.768	1.865
CO2 emissions from unimproved land (t CO2 equiv.)	0	0	0
Total GHG emissions from unimproved land (t CO2 eqiv.)	0	0	0

3. CO2 loss backup

Payback Time

Payback Time - ChartsInput Dat

Windfarm CO2 emission saving 2, CO2 loss due to turbine life 3, CO2 loss due to backup 4, Loss of CO2 fixing potential 5, Loss of soil CO2 (a,b) 5, Loss of soil CO2 (c,d,e) 6, CO2 loss by DOC & POC loss 7, Forestry CO2 loss due to backup 4, Loss of CO2 fixing potential 5.

Emissions due to backup power generation

CO2 loss due to back up is calculated from the extra capacity required for backup of the windfarm given in the input data.

Wind generated electricity is inherently variable, providing unique challenges to the electricity generating industry for provision of a supply to meet consumer demand (Netz, 2004). Backup power is required to accompany wind generation to stabilise the supply to the consumer. This backup power will usually be obtained from a fossil fuel source. At a high level of wind power penetration in the overall generating min, and with current grid management techniques, the capacity for fossil fuel backup may become strained because it is being used to balance the fluctuating consumer demand with a variable and highly unpredictable output from wind turbines (White power is low (less than ~20%), the additional reliance on wind power low (less than ~20%), the additional reliance on wind power low (less than ~20%), the additional reliance on wind pow

Assumption: Backup assumed to be by fossil-fuel-mix of electricity generation. Note that hydroelectricity may also be used for backup, so this assumption may make the value for backup generation too high. These assumptions should be revisited as technology develops.

	Exp.	Min.	Max.
Reserve energy (MWh/yr)	27,594	27,594	27,594
Annual emissions due to backup from fossil fuel-mix of electricity generation (tCO2/yr)	1,192	1,192	1,192
RESULTS			
Total emissions due to backup from fossil fuel-mix of electricity generation (tCO2)	35.762	29.802	Δ1 722

1. CO2 emission saving

Itime
Time - ChartsInput Data
rrm CO2 emission saving 2. CO2 loss due to turbine life 3. CO2 loss due to backup 4. Loss of CO2 fixing potential 5. Loss of soil CO2 (a,b) 5. Loss of soil CO2 (c,d,e) 6. CO2 loss by DOC & POC loss 7. Forestry CO2 loss 8. CO2 gain - site improvement

Emissions due to turbine life

The carbon payback time of the windfarm due to turbine life (eg. manufacture, construction, decomissioning) is calculated by comparing the emissions due to turbine life with carbon-savings achieved by the windfarm while displacing electricity generated from coal-fired capacity or grid-mix.

Capacity factor calculated from forestry data

Area name	Value type	Capacity factor (%)	Wind speed ratio	Average site windspeed (m/s)	Annual theoretical energy output (MW / turbine yr)

Capacity factor - Direct input			
	Exp.	Min.	Max.
Capacity factor (%)	0.4	0.3	0.4

	Exp.	Min.	Max.
Annual energy output from windfarm (MW/yr)			
RESULTS			
Emissions saving over coal-fired electricity generatio	1,991	1,770	2,212
Emissions saving over grid-mix of electricity generati	384	342	427
Emissions saving over fossil fuel - mix of electricity g	858	763	954

2. CO2 loss turbine life

Ime - ChartsInput Data
m CO2 emission saving 2. CO2 loss due to turbine life 3. CO2 loss due to backup 4. Loss of CO2 fixing potential 5. Loss of soil CO2 (a,b) 5. Loss of soil CO2 (c,d,e) 6. CO2 loss by DOC & POC loss 7. Forestry CO2 loss 8. CO2 gain - site improvement.

Emissions due to turbine life

The carbon payback time of the windfarm due to turbine life (eg. manufacture, construction, decomissioning) is calculated by comparing the emissions due to turbine life with carbon-savings achieved by the windfarm while displacing electricity generated from coal-fired capacity or grid-mix.

Calculation of emissions with relation to installed capacity

	Exp.	Min.	Max.
Emissions due to turbine frome energy output (t CO2)	6073	6073	6073
Emissions due to cement used in construction (t CO2)	0	0	0

Direct input of emissions due to turbine life			
	Exp.	Min.	Max.
Emissions due to turbine life (tCO2/windfarm)			

RESULTS

	Exp.	Min.	Max.
Losses due to turbine life (manufacture, construction, etc.) (t CO2)	54656	54656	54656
Additional CO2 payback time of windfarm due to turbine life			
coal-fired electricity generation (months)	329	371	297
grid-mix of electricity generation (months)	1707	1920	1536
fossil fuel - mix of electricity generation (months)	764	860	688

4. Loss CO2 fixing pot.

back Time
back Time - ChartsInput Data
Windfarm CO2 emission saving 2. CO2 loss due to turbine life 3. CO2 loss due to backup 4. Loss of CO2 fixing potential 5. Loss of soil CO2 (a,b) 5. Loss of soil CO2 (c,d,e) 6. CO2 loss by DOC & POC loss 7. Forestry CO2 loss 8. CO2 gain - site improvement
Windfarm CO2 emission saving 2. CO2 loss due to turbine life 3. CO2 loss due to backup 4. Loss of CO2 fixing potential 5. Loss of soil CO2 (a,b) 5. Loss of soil CO2 (c,d,e) 6. CO2 loss by DOC & POC loss 7. Forestry CO2 loss 8. CO2 gain - site improvement

Emissions due to loss of bog plants

Annual C fixation by the site is calculated by multiplying area of the windfarm by the annual C accumulation due to bog plant fixation.

	Exp.	Min.	Max.
Area where carbon accumulation by bog plants is lost (ha)	34.35	22.93	51.68
Total loss of carbon accumulation up to time of restoration (tCO2 eq./ha)	37	22	55
RESULTS			
Total loss of carbon fixation by plants at the site (t CO2)	1259	504	2842
Additional CO2 payback time of windfarm due to loss of CO2 fixing potential			
coal-fired electricity generation (months)	8	3	15
grid-mix of electricity generation (months)	39	18	80
fossil fuel - mix of electricity generation (months)	18	8	36

6. CO2 loss DOC & POC

back Time - ChartsInput Data June - ChartsInput Data - ChartsInput D

Emissions due to loss of DOC and POC

Note, CO2 losses from DOC and POC are calculated using a simple approach derived from generic estimates of the percentage of the total CO2 loss that is due to DOC or POC leaching.

No POC losses for bare soil included yet. If extensive areas of bare soil is present at site need modified calculation (Birnie et al, 1991)

	Exp.	Min.	Max.
Gross CO2 loss from restored drained land (t CO2)	0.00	0.00	0.00
Gross CH4 loss from restored drained land (t CO2 equiv.)	0.00	0.00	0.00
Gross CO2 loss from improved land (t CO2)	0.00	0.00	0.00
Gross CH4 loss from improved land (t CO2 equiv.)	0.00	0.00	0.00
Total gaseous loss of C (t C)	0.00	0.00	0.00
Total C loss as DOC (t C)	0.00	0.00	0.00
Total C loss as POC (t C)	0.00	0.00	0.00
RESULTS			
Total CO2 loss due to DOC leaching (t CO2)	0.00	0.00	0.00
Total CO2 loss due to POC leaching (t CO2)	0.00	0.00	0.00
Total CO2 loss due to DOC & POC leaching (t CO2)	0.00	0.00	0.00
Additional CO2 payback time of windfarm due to DOC & POC			
coal-fired electricity generation (months)	0	0	0
grid-mix of electricity generation (months)	0	0	0
fossil fuel - mix of electricity generation (months)	0	0	0

TII Carbon Assessment Tool

Ch 15: Material Assets, Section 15.1.4.1.1, Table 15-7					Distance Assumptions	TII Embodied Carbon Tool Inputs (https://web.tii.ie/index.html)						TII Transport Inputs (https://web.tii.ie/index.html)		
Material	Total no. Truck Loads	Truck Types	TII Embodied Carbon	TII Traffic	Distance (km)	Category	Sub-Category	Material	Quantity	Unit	Embodied tCO2e	Transport Type	Distance (km)	Transport TCO2e
Concrete	960	Concrete Mixer	✓	√	13.5	Series 1700 - Structural Concrete	Concrete - Construction General	Concrete Average	7296	m3	1924.34	HGV - Rigid - Average	19200	19.16
Delivery of plant	35	Large Arctic		√	20							HGV- All - Average	700	0.75
Fencing & gates	3	Large Arctic		✓	20							HGV- All - Average	60	0.06
Compound setup	36	Large Arctic		✓	20							HGV- All - Average	720	0.77
Steel	25	Large Arctic	√	√	134	Series 1800 - Structural Steelwork	General	Anchorages and holding down bolt assemblies	750	tonnes	1,344.83	HGV- All - Average	4824	5.18
Sand / binding / stone	72	Truck	√	√	20	Series 800 - Road Pavements - Unbound and Cement Bound Mixtures	Sand	Sand	2160.00	tonnes	15.12	LGV - Average	1440	0.43
Ducting and cabling (internal)	264	Large Arctic		√	20							HGV - All - Average	5280	5.67
Tree felling	67	Truck		✓	20							HGV - All - Average	1340	1.44
Crane (to lift steel)	1	Large Arctic		√	134							HGV - All - Average	134	0.14
Stone for Wind Farm	2370	Truck	_	√	20	Series 2400 - Brickwork, Blockwork, and Stonework	Brickwork and Blockwork	General Stone	3615.37	tonnes	285.61	LGV - Average	47400	14.18
Stone for Grid Connection	2260	Truck	V	√	20	Series 2400 - Brickwork, Blockwork, and Stonework	Brickwork and Blockwork	General Stone	3447.57	tonnes	272.36	LGV - Average	45200	13.52
Substation	100	Large Arctic		√	134							HGV - All - Average	13400	14.38
Cranes for turbines	12	Large Arctic		√	134							HGV - All - Average	1608	1.73
Refuelling for plant	186	Large Arctic		√	20							HGV - All - Average	3720	3.99
Site maintenance	135	Large Arctic		√	20			_				HGV - All - Average	2700	2.9
Miscellaneous	90	Large Arctic		√	20							HGV - All - Average	1800	1.93
Total											3,842			86

List of Assumptions

	Embodied Carbon Assumptions		Traffic Assumptions				
Item	Description	Assumption	Item	Description	Assumption		
Volume of Concrete Mixer	Calculation completed based on the average concrete mixer holding 7.6m3 of concrete	7.6	Import (P) Distance	For modelling purposes, the average distance from Shannon Foynes Port, Limerick City and the Port of Dublin, Dublin City for transport of all other materials for the site	134		
Volume of Average Artic Truck	Calculation completed based on the average artic truck having a carrying capacity of 30 tonnes	30	Quarry (Q) Distance	Identified Quarries within a 20km Radius in Section 4.3.1.8 in Chapter 4 (Figure 4-18) in this EIAR	20		
Ducting and cabling (internal)	Embodied carbon of electrical equipment not included as an option in TII Carbon Tool	-	Concrete Mixer Emission factor	Calculated from an HGV - Rigid - Average emission factor as provided in the TII Carbon Tool	0.99784		
Grid connection cable laying	Embodied carbon of electrical equipment not included as an option in TII Carbon Tool	-	Large Artic Emission Factor	Calculated from an HGV - All - Average emission factor as provided in the TII Carbon Tool	1.07296		
Tree Felling	Embodied carbon of tree felling is included in the Macauley Institute Carbon Calculator for Wind Farms on Peatland	-	Truck Emissions Factor	Calculated from an LGV - Average emission factor as provided in the TII Carbon Tool	0.29913		
Turbine Lifecycle	Embodied carbon of the overall turbine lifecycle is included in the Macauley Institute Carbon Calculator for Wind Farms on Peatland	-					